9 research outputs found

    Asynchronous Contact Tracing

    Get PDF
    This document examines the use of IoT technology in contact tracing and introduces the concept of Asynchronous Contact Tracing (ACT). ACT identifies contacts with IoT connected objects that have been contaminated by the SARS-CoV-2 virus and works in synergy with solutions designed for manual contact tracing to identify and alert people who may have been infected by the virus. This shifts the paradigm from synchronously tracing the contacts of the people infected by Covid-19 to asynchronously tracing of contacts of materials (such as infected surfaces, waste water, air conditioning filters, etc.) that are hosting the SARS-CoV-2 virus. This enables people who have come into contact asynchronously with those particular materials to be alerted of a potential Covid-19 contagion, and, at the same time, it signals that one or more persons have been in contact with the material which is now spreading the SARS-CoV-2 virus. This process could be particularly effective, considering that the SARS-CoV-2 virus can survive for a significant time on certain materials. The level of contamination may on the nature of the surface and materials, the concentration of the virus, the ambient temperature, the season of the year, the level of humidity, and exposure to sun light. The period of contamination can span from a few hours to several days. The ACT process uses existing, ready-to-market IoT-based technology and well-established wireless network techniques. The process is not dependent on achieving a certain number of tests, or of people adopting it, in order for the results to be useful. Moreover, it does not require the transmission of any personal information by the user, thus respecting both EU GDPR and public sensibility to personal privacy. This process was inspired by Occam's Razor [5] or the Law of Parsimony (Latin: Lex Parsimoniae), that states that entities and theories useful to solve a problem should not be multiplied unless necessary. On the contrary, simpler entities and theories are preferable to more complex ones because they are easier to test and more likely to be true

    ETSI SmartM2M Technical Report 103714: Study for oneM2M Discovery and Query use cases and requirements

    Get PDF
    The oneM2M system has implemented basic native discovery capabilities. In order to enhance the semantic capabilities of the oneM2M architecture by providing solid contributions to the oneM2M standards, four Technical Reports have been developed. Each of them is the outcome of a special study phase: requirements, study, simulation and standardization phase. The present document covers the first phase and provides the basis for the other documents.The use cases specified in the present document lead to potential requirements, which extend the existing requirements of the use case documented in oneM2M TR-0001 [i.19], clause 12.9 with a focus on the discovery and query capabilities, introducing a direct relation with the semantic aspects and enabling more sophisticated semantic queries as e.g. a capability in the CSE, that takes routing decisions for forwarding a received Advanced Semantic Discovery Query.oneM2M has currently native discovery capabilities that work properly only if the search is related to specific known sources of information (e.g. searching for the values of a known set of containers) or if the discovery is well scoped and designed (e.g. the lights in a house). When oneM2M is used to discover wide sets of data or unknown sets of data, the functionality is typically integrated by ad hoc applications that are expanding the oneM2M functionality. This means that this core function may be implemented with different flavours and this is not optimal for interworking and interoperability.The objective of the present document [i.1] in conjunction with three other ones [i.2], [i.3] and [i.4] is the study and development of semantic Discovery and Query capabilities for oneM2M and its contribution to the oneM2M standard.The goal is to enable an easy and efficient discovery of information and a proper interworking with external source/consumers of information (e.g. a distributed data base in a smart city or in a firm), or to directly search information in the oneM2M system for big data purposes

    ETSI Technical Specification TS 103757. SmartM2M; Asynchronous Contact Tracing System: Fighting pandemic disease with Internet of Things (IoT)

    Get PDF
    The present document defines properties and usage of IoT and M2M technology in Contact Tracing.It introduces the method of Asynchronous Contact Tracing (ACT). ACT registers the presence of SARS-CoV-2 virus on IoT connected objects (waste water, or air conditioning filters, or dirty objects, or dirty cleaning tools, etc.) or connected locations (such as a shops, restaurants, corridors in a supermarket, sanitary facilities in a shopping mall, railway stations, airports terminals and gates, etc.) using Group Test (sometime called in the literature Pooling Test).ACT identifies contacts with IoT connected objects that have been contaminated by the SARS-CoV-2 virus and works in synergy with solutions designed for manual and digital contact tracing to identify and alert people who may have been infected by the virus. In case the object is suspected to host or have hosted the SARS-CoV-2 virus, ACT allows users that have been in contact with the object or visited the connected location to be informed.This shifts the paradigm from synchronously tracing the contacts of the people infected by COVID-19 to asynchronously tracing of contacts of materials (such as infected surfaces, waste-water, air-conditioning filters, etc.) that are hosting the SARS-CoV-2 virus.This enables people who have come into contact asynchronously with those particular materials to be alerted of a potential COVID-19 contagion, and, at the same time, it signals that one or more persons have been in contact with the material which is now spreading the SARS-CoV-2 virus.Asynchronous Contact Tracing (ACT) traces the IoT connected object that may have been infected by the Covid-19 virus (or future pandemic viruses). This shifts the paradigm, from searching for a person in the process of infecting another to the tracing of both potential contamination and infections, and leveraging on the combination of the two information.The scope of this WI is to standardize the full support of Asynchronous Contact Tracing (ACT) by means of1) providing some examples of use and deployment of ACT by means of a few explanatory use cases.2) specifying the ACT method and its interaction with deployed contact tracing applications for human and systems. This includes the interaction with the different technologies used by non ACT contact tracing solutions.3) specifying the ACT system including application protocols and API.The new ACT method will require the use of existing ready-to-market IoT-based technology and well-established wireless network techniques, in particular the ones specified in the ETSI standards ecosystem. Moreover, it will preserve the user's privacy in accordance with GDPR and/or other regional requirements not requiring the transmission of any personal information by the user

    ETSI SmartM2M Technical Report 103717; Study for oneM2M; Discovery and Query specification development

    Get PDF
    The oneM2M system has implemented basic native discovery capabilities. In order to enhance the semantic capabilities of the oneM2M architecture by providing solid contributions to the oneM2M standards, four Technical Reports have been developed. Each of them is the outcome of a special study phase: requirements, study, simulation and standardization phase. The present document covers the second phase and provides the basis for the other documents. It identifies, defines and analyses relevant approaches with respect to the use cases and requirements developed in ETSI TR 103 714 The most appropriate one will be selected.The present document develops the specification for the discovery solution selected in ETSI TR 103 715 [i.2] and which simulation is documented in ETSI TR 103 716 [i.3]. The present document specifies candidate solutions while the corresponding standardization proposals are contributed to oneM2M TS-0001 (Architecture) [i.5], oneM2M TS- 0034 (Semantic support) [i.7], oneM2M TS-0033 (Interworking Framework) [i.18], oneM2M TS-0004 (Protocols) [i.19] (other oneM2M TS may be also impacted) with the help of the supporting companies active in oneM2M

    ETSI SmartM2M Technical Report 103716; oneM2M Discovery and Query solution(s) simulation and performance evaluation

    Get PDF
    oneM2M has currently native discovery capabilities that work properly only if the search is related to specific known sources of information (e.g. searching for the values of a known set of containers) or if the discovery is well scoped and designed (e.g. the lights in a house). When oneM2M is used to discover wide sets of data or unknown sets of data, the functionality is typically integrated by ad hoc applications that are expanding the oneM2M functionality. This means that this core function may be implemented with different flavours and this is not optimal for interworking and interoperability.The objective of the present document [i.3] in conjunction with three other ones ETSI TR 103 714 [i.1], ETSITR 103 715 [i.2] and ETSI TR 103 717 [i.4] is the study and development of semantic Discovery and Query capabilities for oneM2M and its contribution to the oneM2M standard.The goal is to enable an easy and efficient discovery of information and a proper interworking with external source/consumers of information (e.g. a distributed data base in a smart city or in a firm), or to directly search information in the oneM2M system for big data purposes.A simulation phase is conducted in parallel and "circular" feedback with respect to the study phase, with the goal to provide a proof of concept, run suitable scenarios provided by previous phases and a performance evaluation to support the selection/development of the Discovery and Query solution. The simulator and the simulation results are documented in ETSI TR 103 716 [i.3] (the present document). An extract of the simulation results is included ETSI TR 103 715 [i.2] and ETSI TR 103 717 [i.4]. A selection of the use cases includes a set of oneM2M relevant configurations scenarios to be considered for the simulation activity described below

    ETSI SmartM2M Technical Report 103715; Study for oneM2M; Discovery and Query solutions analysis & selection

    Get PDF
    The oneM2M system has implemented basic native discovery capabilities. In order to enhance the semantic capabilities of the oneM2M architecture by providing solid contributions to the oneM2M standards, four Technical Reports have been developed. Each of them is the outcome of a special study phase: requirements, study, simulation and standardization phase. The present document covers the second phase and provides the basis for the other documents. It identifies, defines and analyses relevant approaches with respect to the use cases and requirements developed in ETSI TR 103 714 The most appropriate one will be selected

    Autologous fat grafting in the treatment of velopharyngeal insufficiency: Clinical outcomes and treatment tolerability survey in a case series of 21 patients

    No full text
    Introduction: Velopharyngeal insufficiency (VPI) is the inability to close the velopharyngeal sphincter during phonation and/or feeding. VPI is clinically characterised by hypernasal speech and nasal regurgitation. In cases of severe VPI, pharyngoplasty is recommended. Cases of mild-to-moderate VPI can be treated with fat grafting of the posterior pharyngeal wall in addition to speech therapy. The lipofilling can also be useful after pharyngoplasty to improve the outcomes. Materials and Methods: Twenty-one patients (14 males and 7 females), ages 4–23 affected by mild-to-moderate VPI and treated with lipofilling were included in this retrospective study. The mean injected fat volume was 7.95 cc (median 6 cc, min 4 cc, max 20 cc and range 16 cc). The follow-up ranged from 6 to 60 months. The pre- and post-operative Borel–Maisonny scores were compared using Wilcoxon test. Moreover, we performed a telephone survey with the aim to assess the parental perception on child's speech and quality of life after the surgical treatment. Results: Despite the small sample size, in this case series, we observed a statistically significant Borel–Maisonny score improvement and a parental satisfaction rate of about 85%. Conclusions: The augmentation of the posterior pharyngeal wall in addition to speech therapy improved the Borel–Maisonny score and the intelligibility of this case series of patients affected by mild-to-moderate VPI. In these patients, evaluated in a multidisciplinary approach, this technique allowed us to avoid major surgical procedures that would modify the anatomy of the velopharyngeal port. However, prospective comparative studies or randomised controlled trials could be useful to compare fat grafting with velopharyngoplasty techniques, with the aim to clarify indications and to define a specific treatment protocol

    The creatine transporter mediates the uptake of creatine by brain tissue, but not the uptake of two creatine-derived compounds

    No full text
    Hereditary creatine transporter deficiency causes brain damage, despite the brain having the enzymes to synthesize creatine. Such damage occurring despite an endogenous synthesis is not easily explained. This condition is incurable, because creatine may not be delivered to the brain without its transporter. Creatine-derived compounds that crossed the blood\u2013brain barrier in a transporter-independent fashion would be useful in the therapy of hereditary creatine transporter deficiency, and possibly also in neuroprotection against brain anoxia or ischemia. We tested the double hypothesis that: (1) the creatine carrier is needed to make creatine cross the plasma membrane of brain cells and (2) creatine-derived molecules may cross this plasma membrane independently of the creatine carrier. In in vitro mouse hippocampal slices, incubation with creatine increased creatine and phosphocreatine content of the tissue. Inhibition of the creatine transporter with 3-guanidinopropionic acid (GPA) dose-dependently prevented this increase. Incubation with creatine benzyl ester (CrOBzl) or phosphocreatine\u2013Mg-complex acetate (PCr-Mg-CPLX) increased tissue creatine content, not phosphocreatine. This increase was not prevented by GPA. Thus, the creatine transporter is required for creatine uptake through the plasma membrane. Since there is a strong indication that creatine in the brain is mainly synthesized by glial cells and transferred to neurons, this might explain why hereditary transporter deficiency is attended by severe brain damage despite the possibility of an endogenous synthesis. CrOBzl and PCr-Mg-CPLX cross the plasma membrane in a transporter-independent way, and might be useful in the therapy of hereditary creatine transporter deficiency. They may also prove useful in the therapy of brain anoxia or ischemia
    corecore